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Summary

� Many flowers exhibit phenotypic plasticity. By inducing the production of several pheno-

types, plasticity may favour the rapid exploration of different regions of the floral morphospace.

We investigated how plasticity drives Moricandia arvensis, a species displaying within-

individual floral polyphenism, across the floral morphospace of the entire Brassicaceae family.
� We compiled the multidimensional floral phenotype, the phylogenetic relationships, and

the pollination niche of over 3000 species to construct a family-wide floral morphospace. We

assessed the disparity between the two M. arvensis floral morphs (as the distance between

the phenotypic spaces occupied by each morph) and compared it with the family-wide dispar-

ity. We measured floral divergence by comparing disparity with the most common ancestor,

and estimated the convergence of each floral morph with other species belonging to the same

pollination niches.
� Moricandia arvensis exhibits a plasticity-mediated floral disparity greater than that found

between species, genera and tribes. The novel phenotype of M. arvensis moves outside the

region occupied by its ancestors and relatives, crosses into a new region where it encounters a

different pollination niche, and converges with distant Brassicaceae lineages.
� Our study suggests that phenotypic plasticity favours floral divergence and rapid appear-

ance of convergent flowers, a process which facilitates the evolution of generalist pollination

systems.

Introduction

The expansion of lineages across the phenotypic space is a com-
plex process that may result from the ecological opportunities
that emerge when said lineages are exposed to new ecological
niches (Schluter, 2000; Nosil, 2012). When this occurs, diver-
gent selection on some phenotypes results in phenotypic diversifi-
cation among lineages, boosting morphological disparity (the
phenotypic space occupied by the lineages), triggering a morpho-
logical radiation, and eventually filling the phenotypic space
(Sim~oes et al., 2016; Walden et al., 2020). Because morphologi-
cal spaces fill up as lineages diversify (Pie & Weitz, 2005), unoc-
cupied regions become rare in highly diversified lineages
(Winemiller et al., 2015). Under these circumstances, entering
into a new region usually entails sharing it with other species
exploiting the same ecological niche (Losos, 2011; Winemiller
et al., 2015; Stayton, 2020). In this situation, independent lin-
eages tend to evolve similar phenotypes through convergent evo-
lution (Losos, 2011; Pearce, 2011). In diversified lineages
occupying filled morphospaces, divergent and convergent evolu-
tion are ineludibly connected (Winemiller et al., 2015; Pigot

et al., 2020), and both processes contribute significantly to shap-
ing the geometry of the morphospace occupation (Pearce, 2011;
Stayton, 2020).

The evolution of flowers in angiosperms is largely driven by
interaction with pollinators (Lloyd & Barrett, 1996; Fenster
et al., 2004; Endress, 2011; Van der Niet & Johnson, 2012;
G�omez et al., 2014; Peter & Johnson, 2014; van der Niet et al.,
2014). Shifts between pollination niches explain floral divergence
and are associated with diversification of flowers in multiple
groups of plants (Whittall & Hodges, 2007; Smith et al., 2008;
Lagomarsino et al., 2016; Serrano-Serrano et al., 2017; Kriebel
et al., 2020; Dellinger et al., 2021). On the other hand, floral
convergence has also been tied to pollinator shifts in some plant
groups (Smith & Kriebel, 2018). In fact, selection exerted by
functionally equivalent pollinators is considered to be the main
driver of the convergent evolution of floral traits in different plant
species, the so-called pollination syndromes (Faegri & van der
Pijl, 1980; Dellinger, 2020; Phillips et al., 2020; Wessinger &
Hileman, 2020). All of this suggests that pollinators are an
important motor shaping the pattern and geometry of occupation
of floral phenotypic space (Ollerton & Watts, 2000; Ollerton
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et al., 2009; Chartier et al., 2014, 2017; Smith & Kriebel, 2018;
Herv�ıas-Parejo et al., 2019).

Phenotypic plasticity might elicit the emergence of novel phe-
notypes with new adaptive possibilities, which may be beneficial
in some contexts (West-Eberhard, 2003; Sultan, 2015). It is
increasingly acknowledged that many floral traits exhibit pheno-
typic plasticity in response to diverse environmental stimuli and
to cope with many biotic and abiotic stressors (Harder & John-
son, 2005; Campbell et al., 2019; Rusman et al., 2019a,b). By
inducing the production of contrasting phenotypes, plasticity
may favour the exploration of different regions of the floral phe-
notypic space almost simultaneously (G�omez et al., 2020). This
creates an opportunity for plastic species to display derived floral
morphs (phenotypes) that may diverge from their linages/ances-
tors and converge with species already located in other regions of
the floral morphospace. We explored this idea by investigating
how plasticity drives the Purple Mistress, Moricandia arvensis,
across the morphological space of the entire Brassicaceae family.
This mustard species exhibits extreme polyphenism in flowers
(G�omez et al., 2020). Individuals of M. arvensis display two
flower morphs in response to seasonal changes in temperature,
radiation, and water availability: large, cross-shaped lilac flowers
in spring but small, rounded, white flowers in summer (Fig. 1;
G�omez et al., 2020). By studying the multidimensional floral
phenotypes, the phylogenetic relationships, and the pollination
niches of over 3000 Brassicaceae species, we demonstrate that
phenotypic plasticity causes this mustard species to produce a
phenotype that diverges from its ancestors and close relatives,
crosses into a new region of the ecological space, and converges
morphologically with distant Brassicaceae lineages belonging to
the same pollination niche. This finding may have striking impli-
cations for understanding how pollination systems may evolve in
generalist species.

Materials and Methods

Floral traits

Brassicaceae is one of the largest angiosperm families, with almost
4000 species grouped in 351 genera and 51 tribes (Kiefer et al.,

2014; Koch et al., 2018; Walden et al., 2020). We recorded from
the literature the following 31 floral traits in 3140 Brassicaceae
plant species belonging to 330 genera and 51 tribes: plant height;
flower display size; inflorescence architecture; presence of
apetalous flowers; number of symmetry axes of the corolla; orien-
tation of dominant symmetry axis of the corolla; corolla with
overlapped petals; corolla with multilobed petals; corolla with
visible sepals; petal length; sepal length; asymmetric petals; petal
limb length; length of long stamens; length of short stamens; sta-
men dimorphism; tetradynamous condition; visible anthers;
exserted stamens; number of stamens; concealed nectaries; petal
carotenoids; petal anthocyanins; presence of bullseyes; presence
of veins in the petals; coloured sepals; relative attractiveness of
petals vs sepals; petal hue; petal colour; sepal hue; sepal colour
(see Supporting Information Notes S1; Dataset S1 for details).
All of these traits have been proven to be important for interac-
tions with pollinators (Notes S1).

Family-wide floral morphospace

Using the original multidimensional trait-species matrix, we
built a floral morphospace. For this, we reduced the high-
dimensional matrix of floral traits to a two-dimensional space
using an ordination technique (Legendre & Legendre, 2012).
Because the floral traits included in this study were quantitative,
semi-quantitative and qualitative, we used ordination techniques
based on dissimilarity values. We first constructed a pairwise
square distance matrix of length equal to the number of species
included in the analysis (n = 3140). We used the Gower dis-
tance, the number of mismatched traits over the number of
shared traits. This dissimilarity index is preferable to the raw
Euclidean distance when discrete and continuous traits co-occur
in the same dataset (Legendre & Legendre, 2012; Guillerme &
Cooper, 2018). To ensure an accurate description of the distri-
bution of the species in the morphospace, we first run a princi-
pal coordinate analysis (PCoA), a technique providing a low-
dimensional Euclidean representation of a set of objects whose
relationship is measured by any dissimilarity index. We cor-
rected for negative eigenvalues using the Cailliez procedure
(Legendre & Legendre, 2012). Afterwards, we used this metric
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Fig. 1 Moricandia arvensis life habit.
Detailed view of plants and flowers of
M. arvensis in spring (a) and summer (b).
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configuration as the initial configuration to run a nonmetric
multidimensional scaling (NMDS) algorithm (Legendre &
Legendre, 2012), a method that further optimises the sample
distribution such that more variation in species composition is
represented by fewer ordination axes. Unlike methods that
attempt to maximise the variance or correspondence between
objects in an ordination, NMDS attempts to represent, as
closely as possible, the pairwise dissimilarity between objects in
a low-dimensional space (Legendre & Legendre, 2012). Objects
that are ordinated closer to one another are likely to be more
similar than those further apart (Legendre et al., 2005). This
method is more robust than distance-based methods when the
original matrix includes variables of contrasting nature. Non-
metric multidimensional scaling is an iterative algorithm that
can fail to find the optimal solution. We decreased the potential
effect of falling in local optima by running the analysis with
5000 random starts and iterating each run 19 106 times (Mair
et al., 2016). The NMDS used a monotone regression minimiz-
ing Kruskal’s stress-1 (Kruskal, 1964a,b) and compared each
solution using Procrustes analysis, retaining that with the lowest
residual. Because many species did not share trait states, a con-
dition complicating ordination, we used stepacross dissimilarities,
a function that replaces dissimilarities with the shortest paths
stepping across intermediate sites, while regarding dissimilarities
above a threshold as missing data (De’ath, 1999). We used
weak tie treatment, allowing equal observed dissimilarities to
have different fitted values. The scores of the species in the final
ordination configuration were obtained using weighted averag-
ing. We checked whether the reduction in dimensionality main-
tained the between-species relationship by checking the stress of
the resulting ordination and calculating the goodness of fit for
points in nonmetric multidimensional scaling (Mair et al.,
2016). All ordinations were done using the R packages VEGAN

(Oksanen et al., 2013) and ECODIST (Goslee & Urban, 2007). It
is important to note that, although the transfer function from
observed dissimilarities to ordination distances is nonmetric, the
resulting NMDS configuration is Euclidean and rotation-
invariant (Oksanen, 2020).

Morphological disparity

The morphological disparities were calculated using indices
related to the distance between elements (Guillerme et al., 2020a,
b). We first determined the disparity between the spring and
summer phenotype of M. arvensis as their Euclidean distance in
the floral morphospace (Guillerme et al., 2020b). Afterwards, we
calculated the pairwise disparities between all species included in
our study using the same approach. To find out how intense the
plasticity-mediated disparity in M. arvensis is, we compared its
value with the disparity values observed at five different taxo-
nomic levels in our dataset: within species (Dataset S2), between
Moricandia species, between species of the same genera, between
species of different genera and between species of different tribes
(Dataset S1). Disparity values were calculated using the function
dispRity of the R package DISPRITY using the command centroid
(Guillerme, 2018). The statistical differences between the

M. arvensis plasticity-mediated disparity and the disparity of each
taxonomic level were tested using Z-score tests.

Morphological divergence of the plastic phenotypes

Divergence in floral phenotype was estimated by calculating the
disparity of the two floral morphs of M. arvensis to its ancestors.
We determined the floral phenotype of the most recent common
ancestor (MRCA) by projecting a recent time-calibrated phy-
logeny of the genus Moricandia (Perfectti et al., 2017) onto the
morphospace. This phylogenetic analysis included all known
species belonging to the genus Moricandia (eight species), as well
as the sister genus Rytidocarpus and the close genus Eruca,
totalling 15 species, and was made using a nuclear (the internal
transcribed spacers of the ribosomal DNA) and two plastidial
regions (parts of the NADH dehydrogenase subunit F gene and
the trnT-trnF region). Because disparity analyses are sensitive to
the tree topology and the inferred branch lengths (Guillerme
et al., 2020a), we also calculated the divergence using three recent
time-scaled phylogenies that included information on M. arvensis
and other Moricandia (Gaynor et al., 2018; Smith & Brown,
2018; Huang et al., 2020). The taxonomy of the species included
in each tree was checked and updated using the species checklist,
with accepted names provided by Brassibase (https://brassibase.
cos.uni-heidelberg.de/) (Koch et al., 2012, 2018; Kiefer et al.,
2014; Walden et al., 2020). Once we inferred the coordinates of
the MRCA in the morphospace according to each of the four
phylogenies, we calculated the disparity of all Moricandia species
and the two plastic phenotypes of M. arvensis to the MRCA.
Afterwards, we calculated the divergence of the two plastic phe-
notypes from the direct ancestor of M. arvensis. In addition, we
calculated the divergence from the direct ancestors of the rest of
the Brassicaceae species included in these four phylogenies. All
floral divergences were calculated using the command ances-
tral.dist of the function dispRity in the R package DISPRITY

(Guillerme, 2018).

Morphospatial variation in pollination niches

We compiled a massive database of 21 212 records, comprising
456 031 visits by over 800 animal species from 19 taxonomical
orders and 276 families to 554 Brassicaceae species belonging to
39 tribes (Dataset S3). Information for the database came from
the literature, personal observations, online repositories and per-
sonal communications of several colleagues (Dataset S3;
Table S1). In those species studied by us (coded as UNIGEN
data origin in Dataset S3), we conducted flower visitor counts in
1–16 populations per plant species. We visited the populations
during the blooming peak, always at the same phenological stage
and between 11:00 h and 17:00 h. During these visits, we
recorded the insects visiting the flowers for 2 h without differenti-
ating between individual plants. Insects were identified in the
field, and some specimens were captured for further identification
in the laboratory. We only recorded those insects contacting
anthers or stigma and making legitimate visits for at least part of
their foraging on flowers. We did not record petal-eating or
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nectar-thieving insects which did not make a legitimate visit. The
information obtained from the literature and online repositories
(coded as LITERATURE data origin in the Dataset S3) includes
records done during ecological studies, taxonomical studies and
naturalistic studies. The reference of every record is included in
the dataset.

We thereby grouped all pollinators visiting the Brassicaceae
species into 43 functional groups using criteria of similarity in
body length, proboscis length, morphological match with the
flower, foraging behaviour, and feeding habits (Fenster et al.,
2004; G�omez et al., 2015a, 2016; Table S2). We tested the auto-
correlation across the morphospace in the abundance of each of
these functional groups using a multivariate Mantel test. The
Pearson correlation method was used, and the statistical signifi-
cance was found after performing 999 bootstrap replicates
(Legendre & Legendre, 2012). The test was performed in the R
package VEGAN (Oksanen et al., 2013).

We determined the occurrence of different pollination niches
in the set of plant species included in this study using bipartite
modularity, a complex-network metric. Modularity has proven
to be a good proxy of interaction niches both in ecological net-
works, those including coexisting species or populations, as well
as in clade-oriented networks, those including species with
information coming from disparate and contrasting sources
(G�omez et al., 2010). We constructed a weighted bipartite net-
work, including pollinator data of four M. arvensis populations
during the spring and summer flowering. In this network, we
pooled the data from the different individuals in a population
and did not consider the time difference involved in sampling
across different species. We removed all plant species with < 20
visits. We subsequently determined the modularity level in this
weighted bipartite network using the QUANBIMO algorithm
(Dormann & Strauss, 2014). This method uses a simulated
annealing Monte-Carlo approach to find the best division of
populations into modules. A maximum of 1010 Markov chain
Monte Carlo (MCMC) steps with a tolerance level = 10–10 was
used in 100 iterations, retaining the iterations with the highest
likelihood value as the optimal modular configuration. We
tested whether our network was significantly more modular
than random networks by running the same algorithm in 100
random networks, with the same linkage density as the empiri-
cal one (Guimer�a & Amaral, 2005). Modularity significance
was tested for each iteration by comparing the empirical vs the
random modularity indices using a Z-score test (Dormann &
Strauss, 2014). After testing the modularity of our network, we
determined the number of modules (Newman, 2004). We sub-
sequently identified the pollinator functional groups defining
each module and the plant species ascribed to each module.
Modularity analysis was performed using the R package BIPAR-

TITE v.2.0 (Dormann et al., 2008). We quantified the niche
overlap between all pairs of Brassicaceae species using the
Czekanowski index of resource utilization, an index that mea-
sures the area of intersection of the resource utilization his-
tograms of each species pair (Feinsinger et al., 1981). This index
was calculated using the function niche.overlap in the R package
SPAA (Zhang & Zhang, 2013).

Estimation of ancestral values of pollination niches

The ancestral states of the pollination niche were inferred for the
Moricandia lineage by simulated stochastic character mapping of
discrete traits with Bayesian posterior probability distribution
(Huelsenbeck et al., 2003; Bollback, 2006). Three models of
character evolution (ER, equal Rates; SYM, symmetric; and
ARD, all rates different) were evaluated using the fitDiscrete func-
tion of the R package GEIGER (Harmon et al., 2008). The best
model was selected using the Akaike Information Criterion
(AIC), and was used for stochastic character mapping. The poste-
rior distribution of the transition rate matrix was determined
using an MCMC simulation, and the stochastic mapping was
simulated 100 times. Stochastic character mapping was per-
formed using the make.simmap function and a plot of posterior
probabilities was mapped using the describe.simmap function in R
package PHYTOOLS (Revell, 2012). This analysis was performed
using the Perfectti et al. (2017) phylogeny, the most accurate
phylogeny to date forMoricandia.

Morphological convergence

We used three different approaches to detect morphological con-
vergence, two based on the comparison of phenotypic and phylo-
genetic distances (Arbuckle et al., 2014; Stayton, 2015) and the
other based on comparing the angles formed by two tested clades
from their most recent common ancestor with the expected angle
according to null evolutionary models (Castiglione et al., 2019).
Because all of these analyses are sensitive to the number of tips in
the phylogeny and the inferred branch lengths, we tested for the
occurrence of morphological convergence using the three inde-
pendent, time-calibrated phylogenies described above (Gaynor
et al., 2018; Smith & Brown, 2018; Huang et al., 2020).

Under the first approach, four distance-based measures of con-
vergence (C1–C4) were calculated between two lineages relative
to their distance at the point in evolutionary history where the
two lineages were maximally dissimilar (Stayton, 2015). C1
specifically measures the proportion of phenotypic distance
closed by evolution, ranging from 0 to 1 (where 1 indicates com-
plete convergence). To calculate C1, ancestral states are recon-
structed (via a Brownian motion model of evolution) for two or
more putatively convergent lineages, back to their most recent
common ancestor. The maximum phenotypic distance between
any pair of ancestors (Dmax) is calculated, and compared with
the phenotypic distance between the current putatively conver-
gent taxa (Dtip). The greater the difference between Dmax and
Dtip, the higher the index. C2 is the raw value of the difference
between the maximum and extant distance between the two lin-
eages. C3 is C2 scaled by the total evolution (sum of squared
ancestor-to-descendant changes) between the two lineages. C4 is
C2 scaled by the total evolution in the whole clade. These four
measures quantify incomplete convergence in multidimensional
space. The significance of these four metrics was found by run-
ning 1000 simulations for each comparison using Brownian
motion on a variance–covariance matrix based on data-derived
parameters, with convergence measures for each simulation

New Phytologist (2022) 233: 1479–1493
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist1482

 14698137, 2022, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.17807 by M

orocco H
inari N

PL
, W

iley O
nline L

ibrary on [31/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



calculated to determine whether the observed C value is greater
than that expected by chance. A priori focal groups forming the
basis of convergence tests were the two M. arvensis niches. These
analyses were performed using the R package CONVEVOL (Stayton,
2018).

The second approach to measuring convergence used the
Wheatsheaf metric (Arbuckle et al., 2014). This index generates
phenotypic (Euclidean) distances from any number of traits
across species and penalizes them by phylogenetic distance before
investigating similarity (in order to weight close phenotypic simi-
larity higher for distantly related species). It uses an a priori desig-
nation of convergent species, which are defined as species
belonging to a niche for which the traits are hypothesized to con-
verge. The method then calculates a ratio of the mean (penalized)
distances between all species to the mean (penalized) distances
between allegedly convergent species. The index detects whether
convergent species diverge more in phenotypic space from the
nonconvergent species and show a tighter clustering to each other
(Arbuckle et al., 2014). The significance of this index was found
by comparing the empirical values of the index with a distribu-
tion of simulated indices obtained by running 5000 bootstrap
simulations. These analyses were performed using the R package
WINDEX (Arbuckle & Minter, 2015).

The third approach to measuring convergence was based on
comparing the angles formed by two tested clades from their
most recent common ancestor with the expected angle according
to null evolutionary models (Castiglione et al., 2019). Under the
‘state case’, search.conv computes the mean angle over all possible
combinations of species pairs using one species per state. Each
individual angle is divided by the patristic distance (the sum of
the lengths of the branches that link two nodes in a phylogenetic
tree) between the species. Significance is assessed by contrasting
this value with a family of 1000 random angles obtained by shuf-
fling the state across the species (Castiglione et al., 2019). These
analyses were performed using the R package RRPHYLO (Raia et al.,
2019).

Once we tested the occurrence of convergence in theM. arvensis
pollination niches, we assessed whether plasticity caused the evolu-
tion of morphological convergence in any of the two morphs of
this species. We first assessed the convergence region of the Mori-
candia lineage, the region that includes the species converging
morphologically to the Moricandia lineage. To do this, we found
the clades that had significantly smaller angles than the expected
angle according to null evolutionary models. These analyses were
performed using the R package RRPHYLO (Raia et al., 2019). After-
wards, we checked whether any of the two M. arvensis floral phe-
notypes entered the region of the phylomorphospace defined by
their pollination niches. We used the C5 index, a frequency-based
measure that quantifies and reports the number of convergent
events where lineages evolve into a specific region of morphospace
(crossing it from outside) (Stayton, 2015, 2018). C5 sums the
number of times through the evolution of a clade that lineages
cross into a convergent region of a phylomorphospace (the phylo-
genetic connections between taxa represented graphically in a plot
of morphological space). This analysis was performed using the
R package CONVEVOL (Stayton, 2018).

Results

Floral morphospace of Brassicaceae

The resulting morphospace (Fig. 2a) was significantly correlated
with the initial PCoA configuration (r = 0.40, P < 0.0001; Mantel
test) and was a good representation of the original relationship
among the species (R2 > 0.95, Stress = 0.2; Fig. 2b). The distribu-
tion of the species across the morphospace was significantly asso-
ciated with different pollination traits (Fig. S1; Table S3). Species
in the central region were mostly medium-sized plants bearing a
moderate to high number of small, polysymmetric white flowers
with short corolla tubes, exposed nectaries and visible sepals (Figs
a, S1). Species in the bottom right corner were small or prostrate,
bearing minute flowers, often apetalous and with just two or four
stamens, whereas species located in the bottom left corner were
medium-sized plants with asymmetric flowers arranged in corym-
bous inflorescences. Plants with yellow flowers were located in
the right region of the morphospace. By contrast, large plants
with strongly tetradynamous androecium and large, veined, dis-
symmetrical to asymmetrical, pink to blue flowers with concealed
nectaries, long corolla tubes and bullseyes were located in the
upper left region (Figs 2a, S1).

Plasticity-mediated floral disparity

Moricandia arvensis, when blooming in spring (Fig. 1a), occupies
this later peripheral region of the morphospace, close to other
Moricandia species (black dots in Fig. 2a). However, during sum-
mertime, individuals of M. arvensis are shorter and produce
fewer, much smaller flowers with white, unveined and rounded
corollas with overlapped petals and green sepals that are mostly
arranged alone without forming inflorescences (Fig. 1b). Due to
this radical phenotypic change, the summer phenotype of M.
arvensis was located in a different, more central position of the
floral morphospace (Fig. 2a), far away from the region occupied
by any Moricandia species. As a consequence of this jump, the
morphological disparity between the spring and summer pheno-
types of M. arvensis, calculated as their distance in the mor-
phospace, was very high (0.264). In fact, it was much higher than
the average pairwise disparities among all studied Brassicaceae
species (0.155� 0.090, mean � SE, 4912 545 pairwise dispari-
ties) and almost 50% of the largest observed disparity (0.55).
This outcome suggests that phenotypic plasticity prompts M.
arvensis to explore two distant regions of the Brassicaceae floral
morphospace almost simultaneously.

Although several polymorphic species showed considerable val-
ues of between-morph disparity, they were significantly smaller
than the disparity between spring and summer floral phenotypes
of M. arvensis (Z-score = 5.06, P < 0.0001; Table S4). The
plasticity-mediated disparity of M. arvensis was significantly
higher than the disparity existing between Moricandia species
(0.057� 0.033, mean � 1 SE, Z-score = 6.27, P < 0.0001;
Table S5) and between species belonging to the same genus
(0.069� 0.055, Z-score = 3.51, P < 0.0002) (Fig. 3). It was
marginally different from the disparity between species of
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different genera but the same tribe (0.150� 0.085, Z-score =
1.34, P = 0.089) and it was statistically similar to the disparity
occurring between species belonging to different tribes (0.167�
0.087, Z-score = 1.11, P = 0.133; Fig. 3).

Plasticity-mediated floral divergence

Disparities to the most recent common ancestor and to the direct
ancestors were much larger for the summer floral phenotype of
M. arvensis than for the spring phenotype and the other species
of Moricandia (Table 1). This result was consistent across phylo-
genies (Fig. 4a,b) Consequently, the spring phenotype did not
significantly diverge from either the MRCA of Moricandia (Z-
score = 0.36, P = 0.36) or from its direct ancestor (Z-score =
�1.24, P = 0.108). By contrast, the summer phenotype of M.
arvensis diverged significantly both from the Moricandia MRCA
(Z-score = 2.48, P = 0.007) and from its direct ancestor (Z-score
= 1.77, P = 0.038). Hence, the summer phenotype explores a
region of the floral morphospace located out of its phylogenetic
clade range (Fig. 4a). The ancestral disparity of the summer phe-
notype was even higher than the ancestral disparity of most other
Brassicaceae species (Fig. 4b).

Morphospatial variation in pollination niches

The plant–pollinator network included in this study was signifi-
cantly modular (Modularity = 0.385, P < 0.0001) and identified
eight different pollination niches associated with different groups

of pollinators (Fig. S2) located in different regions of the mor-
phospace (F = 44.4, P < 0.001, R2 = 0.39; Adonis test; Fig. 5;
Table S6). Because different insects visited M. arvensis in spring
and summer (Table S7), this plant species shifted between pollina-
tion niches seasonally (Fig. 5). During spring,M. arvensis belonged
to a niche where the most frequent pollinators were long-tongued
bees, beeflies, and hawkmoths (pollination niche 5 in Fig. 5). This
pollination niche was also shared by the other Moricandia species
(Fig. 6) and by 60 out of the 500 species we were able to include
in this analysis (Fig. 5). By contrast, during summer, M. arvensis
belonged to a niche dominated by short-tongued bees (pollination
niche 3 in Fig. 5). This niche was shared with 116 other species.
This niche shift was substantial, since the overlap between the
spring and summer pollinator niches of M. arvensis (Czekanowski
overlap index = 0.35) was significantly lower than the niche over-
lap between congeneric species of Brassicaceae (0.57� 0.42,
Z-score = �0.51, P = 0.003).

Evolution of pollination niche inMoricandia lineage

The stochastic character mapping analysis suggests that the ances-
tral niche of the Moricandia lineage was pollination niche 5 (Fig.
6). This niche seems to be ancestral to the origin of the genusMor-
icandia, since it is shared with the closest genera, Rytidocarpus and
Eruca (Fig. 6). Two shifts have occurred later during the evolution
of the Moricandia lineage, both towards pollination niche 3. One
has been made by Moricandia foetida, and the other shift is that
made by the summer phenotype ofM. arvensis (Fig. 6).
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Plasticity-mediated floral convergence

The three methods gave similar results irrespective of the phy-
logeny used (Table 2). Brassicaceae species belonging to pollina-
tion niche 3 converged morphologically according to the
difference between the observed and expected angles from their

most recent common ancestor, the C1–C3 distance measures of
convergence, and the Wheatsheaf metric only for Huang et al.
(2020)’s phylogeny (Table 2). Similarly, the species belonging to
pollination niche 5 also converged morphologically according to
the difference between the observed and expected angles from
their most recent common ancestor, and the C1–C3 distance
measures of convergence (Table 2). Altogether, these results sug-
gest that floral convergence was frequent among the species
belonging to either of the two studied niches, irrespective of the
method and the phylogeny used.

A convergence region including all species of Moricandia was
detected only when using the Smith & Brown (2018) and
Gaynor et al. (2018) phylogenies (Table 3). This region extended
across the morphospace to include two species of Erysimum also
belonging to pollination niche 5 (Table 3). However, it did not
include the summer phenotype ofM. arvensis in any case (Fig. 7).
When using Huang et al. (2020)’s phylogeny, including only
species from the tribe Brassiceae, the analysis was unable to detect
a convergence region including the entire Moricandia genus
(Table 3).

The C5 index detected between two and six convergent events
towards pollination niche 5, depending on the phylogeny used
(blue arrows in Fig. 7), but none was associated with the spring
phenotype of M. arvensis. By contrast, the C5 index consistently
detected that the summer phenotype ofM. arvensis has converged
with the species belonging to pollination niche 3 (red arrow in
Fig. 7).

Discussion

Brassicaceae floral diversification

Brassicaceae is a plant family with a conserved floral bauplan con-
sisting of flowers with four sepals, four petals, six stamens, and
two carpels (Appel & Al-Shehbaz, 2003) that are easily recogniz-
able due to their cross-like appearance (Endress, 1992; Ronse de
Craene, 2010). The floral morphospace built here, including
> 80% of the known Brassicaceae species, has revealed consider-
able diversity in floral forms due to the considerable variation in
morphological, architectural, and colour traits. We presume that
the magnitude of floral variation is even larger than that reported
here, since information on other floral traits, such as pollen pro-
duction, intrafloral phenology, morphology and number of nec-
taries, production and composition of nectar, and amount and
composition of floral scents and volatiles, is not available for
many of the species included in our study. Brassicaceae flowers
seem to have diversified considerably while the number of floral
organs has remained relatively invariant (Bowman et al., 1999;
G�omez et al., 2016; Nikolov, 2019). The floral morphospace
resulting from this diversification process is dense and lacks large
empty regions. This suggests that Brassicaceae has explored many
of the possible floral morphospace regions during its evolution,
including those associated with the loss or gain of some floral
organs (Bowman et al., 1999; Lee et al., 2002; M�endez &
G�omez, 2006; Hameister et al., 2013; Nikolov, 2019). The
macroevolutionary processes shaping this floral diversification are
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Fig. 3 Floral disparity. Magnitude of floral disparity between different
taxonomic levels of Brassicaceae species. The horizontal lines in the
boxplots denote the median values (50th percentile); the boxes contain the
25th–75th percentiles of the dataset; the whiskers mark the 5th and 95th

percentiles; and values beyond these upper and lower bounds are
considered outliers, marked with dots. The number above each boxplot
shows the number of disparities per level. We have compared this value
with the disparity between spring and summer phenotypes ofMoricandia

arvensis (comparisons with boxplots in red are statistically significant at P
< 0.05, in orange are marginally significant at P < 0.1, and in grey are not
significant).

Table 1 Floral divergence: floral disparity of each species ofMoricandia

from the most recent common ancestor (MRCA) of the genus and from
the direct ancestor of each species, according to theMoricandia

phylogeny made by Perfectti et al. (2017).

Species
Disparity to
MRCA

Disparity to
direct ancestor

Moricandia foetida 0.0396 0.1399
Moricandia moricandioides 0.0591 0.0373
Moricandia nitens 0.0417 0.0735
Moricandia rytidocarpoides 0.0258 0.1050
Moricandia sinaica 0.0276 0.1055
Moricandia spinosa 0.0196 0.2096
Moricandia suffruticosa 0.0639 0.2070
Moricandia arvensis spring
phenotype

0.0808 0.0239

M. arvensis summer phenotype 0.1951 0.2874

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

New Phytologist (2022) 233: 1479–1493
www.newphytologist.com

New
Phytologist Research 1485

 14698137, 2022, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.17807 by M

orocco H
inari N

PL
, W

iley O
nline L

ibrary on [31/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



difficult to deduce due to the absence of a well-solved family-
wide phylogeny comprising the species used in this study. Never-
theless, we could infer some of these processes by checking for
the position of related species in the morphospace. We found
that congeneric species were often widely spread across the mor-
phospace, whereas species from different genera and tribes were
located close together in the same regions. This pattern strongly
suggests frequent events of floral divergence and convergence
during the evolution of the family (Pie & Weitz, 2005; Chartier
et al., 2014). In fact, divergent, convergent, and parallel evolu-
tionary patterns seem to be frequent in Brassicaceae (Huang et al.,
2016; Zhong et al., 2019; Rellstab et al., 2020; Yang et al., 2020;
Bohut�ınsk�a et al., 2021a,b).

Several biotic and abiotic factors may have triggered the evo-
lution of floral diversity in Brassicaceae. Pollinators constitute
an important biotic factor that explains floral diversification in
many angiosperms (van der Niet & Johnson, 2012). It has
been previously shown that, despite exhibiting a generalist pol-
lination system, different Brassicaceae species are pollinated by
different sets of pollinators and exploit different pollination
niches (Wilson et al., 1999; Denisow, 2004; G�omez et al.,
2014, 2015a,b, 2016; Schlinkert et al., 2015; Gibson-Forty
et al., 2020). Pollinators have indeed contributed to the floral
divergence of some Brassicaceae species and clades (G�omez
et al., 2015b, 2016; Gervasi & Schiestl, 2017; Schiestl et al.,
2018; Ramos & Schiestl, 2019). How they have contributed to
the floral convergent and divergent evolution at the level of the
whole family is difficult to ascertain with the information at
hand. But the fact that pollination niches are not randomly dis-
tributed across the floral morphospace suggests that pollinators
may have played a role in the diversification pattern of

Brassicaceae flowers. Our study suggests that, despite the
widespread generalization observed in the pollination systems
of Brassicaceae, species converging phenotypically interact with
similar pollinators. Further research is nevertheless necessary to
get an accurate conclusion.

Plastic floral divergence inM. arvensis

Moricandia is a small and morphologically uniform genus, with
most species displaying similar medium-to-large, cross-shaped
purple-to-pale lilac flowers (de Bol�os, 1946; Tahir & Watts,
2011; Perfectti et al., 2017), with only two narrow endemic
species departing slightly from this floral pattern, M. foetida and
Moricandia rytidocarpoides (Perfectti et al., 2017). Consequently,
the magnitude of floral disparity among these species is small,
with all of them located in the same upper-left region of the
Brassicaceae floral morphospace. They all were also located very
close to the region where the most recent common ancestor of
the genus was presumably located. This suggests that during the
almost 7Myr of evolution of the genus Moricandia (Perfectti
et al., 2017), floral divergence has been negligible. In contrast to
this phylogenetic conservatism, we found that the summer phe-
notype of M. arvensis was located in a completely different
region of the floral morphospace. This is not surprising, consid-
ering that the floral forms of this polyphenic species switch
between two extremes (G�omez et al., 2020). Plasticity-mediated
movements across the morphospace have been reported for sev-
eral other organisms (Pfennig, 2021), like fish (Muschick et al.,
2011; Lofeu et al., 2021), ants (Oettler et al., 2019), nematodes
(Susoy et al., 2015) and even plants (Barnett et al., 2018). Our
case is remarkable because, in contrast to the findings of
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previous studies, plasticity is expressed in M. arvensis within
individuals (G�omez et al., 2020), meaning that the plasticity-
mediated movement across the morphospace is made by single
individuals as the season changes. Moreover, the magnitude of

this plasticity-induced within-individual disparity was even
larger than that found between Moricandia species, and even
between species belonging to different genera or tribes. More
importantly, the plastic flowers of M. arvensis explored a region
of the floral morphospace outside its phylogenetic clade range,
diverging radically from the ancestral phenotype. Finally,
within-individual plasticity is expressed by most populations
across the whole geographical range of the species (G�omez et al.,
2020; J. M. G�omez et al., unpublished). Altogether, these find-
ings suggest that plasticity mediates the pattern of floral diver-
gence in M. arvensis and contributes to expanding the area of
the floral morphospace explored by Moricandia. Studying this
process in other crucifers will help establish if it is exclusive of
Moricandia or, on the contrary, it is a motor of floral diversifi-
cation in Brassicaceae.

Plasticity-mediated floral divergence has allowed the summer
morph of M. arvensis to explore a new region of the ecological
space and to exploit a pollination niche that differs markedly
from that exploited by its closest relatives. The flowers of most
Moricandia species are pollinated by long-tongued bees (Apidae:
Anthophorini) and, to a lesser extent, by other long-tongued
insects (Dukas & Shmida, 1989; K€uchmeister et al., 1995;
Gonz�alez-Meg�ıas, 2016; G�omez et al., 2020). This niche is even
shared by their closest relatives, such as Rytidocarpus morican-
dioides or Eruca spp. (G�omez et al., 2016, 2020; Barazani et al.,
2019; Shakeel et al., 2019), and was reconstructed as the most
likely pollination niche of the Moricandia ancestor. However, the
summer floral morph of M. arvensis is pollinated by a different
set of insects and belongs to a different pollination niche associ-
ated with short-tongued small and medium-size bees (G�omez
et al., 2020). Consequently, this morph exploits a different polli-
nation niche that has largely diverged from the ancestralMorican-
dia niche. We do not know yet whether the niche shift is
adaptive, with plants expressing during summer a set of floral
traits that attract efficient pollinators and maximize fitness, or is a
mere consequence of the change in floral phenotype, with the
pollinators visiting summer flowers being those attracted to the
type of flower displayed during summer. Interestingly, the sum-
mer pollination niche is also exploited by other co-generic
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species, such as M. foetida. This species flowers during spring but
displays flowers resembling the summer flowers of M. arvensis
(Castroviejo, 1993) and, consequently, occupies an intermediate
position between the two morphs of M. arvensis (Table S5). This
is a piece of circumstantial evidence which suggests that the niche

shift in M. arvensis is likely a consequence of the type of flower
exhibited during summer.

Plasticity-mediated floral convergence

Several studies have shown that plasticity may cause the colo-
nization of unfilled regions of the morphospace, contributing to
the emergence of morphological novelties (Muschick et al.,
2011; Levis et al., 2018; Lofeu et al., 2021). In our case, because
Brassicaceae floral morphospace is dense and does not have
many empty regions, plasticity allowed M. arvensis to colonize a
region of the morphospace already occupied by other species.
Due to the extensive generalization of the Brassicaceae pollina-
tion systems, the colonization of this new morphospatial region
entailed the exploitation of a pollination niche already used by
many other cruciferous species. In fact, the summer pollination
niche was shared with almost twice the number of species as the
spring niche (116 vs 60 species). All of this had important con-
sequences for the pattern of floral evolution of M. arvensis. Our
convergence analyses show that, whereas the spring flowers of
M. arvensis evolved within the same pollination niche that it
occupies now, the summer flowers converged with the flowers
of other Brassicaceae exploiting the same summer niche. We
provide evidence which suggests that morphological conver-
gence may arise as a consequence of phenotypic plasticity pro-
moting the colonization of a niche mostly occupied by
unrelated species.

Convergent selection pressures exerted by efficient pollinators
are the main mechanism shaping the evolution of pollination
syndromes (Faegri & van der Pijl, 1980; Dellinger, 2020;
Phillips et al., 2020; Wessinger & Hileman, 2020). Our study
suggests that under certain circumstances, pollination syndromes
might evolve due to floral plasticity. Under this idea, floral traits
change due to external factors such as environmental stimuli,
biotic stressors, etc. (Rusman et al., 2019a,b; G�omez et al.,
2020; Ramos & Schiestl, 2020). When this process takes place
within dense morphospaces, plastic phenotypes may converge
with nonrelated flowers rather than arising as novelties. These
plastic flowers will be visited by pollinators attracted by this
new set of floral traits – presumably the same or similar pollina-
tors to those visiting the flowers located in the same region of

Table 2 Floral convergence of pollination niches: outcome of the analysis
of the occurrence of floral convergence among plants from niches 3 and 5.

Phylogeny

Smith & Brown
(2018)

Gaynor et al.
(2018)

Huang et al.
(2020)

Value P Value P Value P

Niche 3
Angle 80.587 0.008 79.431 0.002 64.930 0.055
Angle/time 2.350 0.719 1.645 0.397 4.023 0.815
C1 0.373 0.000 0.472 0.000 0.415 0.000
C2 0.104 0.000 0.142 0.000 0.104 0.000
C3 0.141 0.000 0.166 0.000 0.219 0.000
C4 0.003 0.720 0.002 0.700 0.008 0.600
Wheatsheaf 0.830 0.986 0.940 0.715 1.060 0.028
Niche 5
Angle 70.093 0.002 73.491 0.002 58.313 0.049
Angle/time 1.393 0.021 1.783 0.745 2.474 0.011
C1 0.356 0.000 0.472 0.000 0.240 0.000
C2 0.110 0.000 0.142 0.000 0.075 0.000
C3 0.128 0.000 0.166 0.000 0.118 0.000
C4 0.003 0.727 0.002 0.700 0.006 0.545
Wheatsheaf 1.120 0.673 1.170 0.094 0.920 0.978

Angle is the mean theta angle between all species belonging to the same
niche. Angle/time is the angle divided by time distance. The significance of
these angles has been found by comparing with a null model consisting of
shuffling each niche 1000 times across the tree tips and calculating a
distribution of random angles. C1 measures the proportion of phenotypic
distance closed by evolution, ranging from 0 to 1 (where 1 indicates
complete convergence). C2 is the raw value of the difference between the
maximum and extant distance between the lineages. C3 is C2 scaled by
the total evolution (sum of squared ancestor-to-descendant changes)
between the two lineages. C4 is C2 scaled by the total evolution in the
whole clade. The significance of C1–C2 was evaluated by running 1000
simulations for each comparison using Brownian-motion models.
Wheatsheaf is the ratio of the mean (penalized) distances between all
species to the mean (penalized) distances between allegedly convergent
species. Significance found by running 5000 bootstrapping simulations.
Significant values are shown in bold.

Table 3 Floral convergence ofMoricandia: outcome of the analysis of morphological convergence between theMoricandia clade and the rest of clades
included in each time-calibrated phylogeny.

hreal hace distmrca Ratio P-value Moricandia clade Other convergent clades Niche(s)

Smith & Brown (2018)’s phylogeny
15.20 4.42 124.24 0.16 0.012 Moricandia genus Erysimum bicolor/scoparium 5
Gaynor et al. (2018)’s phylogeny
10.94 17.83 78.19 0.37 0.037 Moricandia genus E. bicolor/scoparium 5
Huang et al. (2020)’s phylogeny
7.09 0.55 22.05 0.35 0.002 Moricandia foetida +Moricandia moricandioides Erucaria clade + Cakile clade 3, 5
9.38 12.44 24.01 0.91 0.029 M. foetida +M. moricandioides Zilla clade + Foleyola billotii 3, 5

hace, mean angle between ancestral states between each pair of clades; hreal, mean angle over all possible combinations of pairs of species, taking one
species per clade; distmrca, patristic distance (sum of branch length) between the most recent common ancestors of each pair of clades; Ratio, hace + hreal :
distmrca. We indicate the convergent clades and the pollination niches of the species from the convergent clades.

New Phytologist (2022) 233: 1479–1493
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist1488

 14698137, 2022, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.17807 by M

orocco H
inari N

PL
, W

iley O
nline L

ibrary on [31/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the morphospace. That is, plasticity would prompt the quick
rise of a floral phenotype that converges with those of other
species interacting with similar pollinators. Here, and contrary
to the standard view on pollination syndrome evolution, shifts
in floral traits should precede shifts in pollinators. This prece-
dence has been observed in several generalist pollination systems
(Thomson & Wilson, 2008; G�omez et al., 2015b) and even in
some specialized systems where changes in some key traits are
enough to elicit pollination shifts (Casta~neda-Z�arate et al.,
2021). We propose that floral plasticity may be an additional
factor which boosts the evolution of pollination syndromes in
generalist plants, as postulated by the plasticity-first hypothesis
(Levis & Pfennig, 2016). However, further information on how
frequent plasticity-mediated floral and pollination convergences
are in other plant groups is required to get an idea of the
importance of this phenomenon. In addition, it would also be
helpful to know whether the plastic phenotypes become geneti-
cally assimilated, giving rise to new morphs or species belonging
to new pollination systems. We hope that our study contributes

to the development of a promising line of research on the role
of floral plasticity in the evolution of flowers and plant–pollina-
tor interactions.
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